IMPROVED DIAGNOSTICS FOR TEST PROGRAM SETS WITH
LARGE POSSIBLE FAULT DETECTS

David Yip
Support Systems Associates, Inc. - Lakehurst , New Jersey
908-323-2413
E-Mail: YIPDP@LAKEHURST.NAVY .MIL

Richard Lysakowski
Naval Air Warfare Center, Aircraft Division - Lakehurst, New Jersey
908-323-5236
E-Mail: LY SAKORP@LAKEHURST.NAVY .MIL

Joseph Mikolgj
Naval Surface Warfare Center - Crane, Indiana
812-854-5983
E-Mail: JOE@VRGNIA.NWSCC.SEA06.NAVY .MIL



IMPROVED DIAGNOSTICSFOR TEST PROGRAM SETSWITH LARGE
POSSIBLE FAULT DETECTS

David Yip
Richard Lysakowski
Joseph Mikolgj

ABSTRACT

In a test engineering environment involving fault detection and fault isolation of units
under test (UUT), a software system for simulating the performances of digital circuits
is predicated on the use of weighting factors of definite and possible fault detects from
a fault dictionary (a database of unique response output to a set of faults) and the
calculation of a mismatch value for each set of faults. Inclusion of a high number of
possible fault detects, used initially in reducing fault ambiguity size of faultsets, to
calculate the mismatch value proved to be detrimental in isolating faults. This paper
presents a new methodology in calculating the mismatch value for circuit designs with
a high number of possible fault detects to improve diagnostic fault isolation accuracy.

INTRODUCTION

This paper begins with the brief introduction to the processes of detecting and
diagnosing faults on a UUT and then describes the inherent deficiency found in one of
the tools used in isolating those faults. A definition of the essential elements of the
process and the strategy for improvement is presented.

A fault dictionary is a diagnostic database generated by a Digital Automatic Test
Program Generator (DATPG), a digital simulator, that aids in diagnosing faults during
afunctional test of acircuit board. A fault dictionary contains a list of possible faults
for each scenario in ajob. These faults are grouped into faultsets. A faultset is a set of
faults, each of which will cause exactly the same output pinsto fail at exactly the same
patterns.

The digital simulator predicts faults by considering both definite detects and possible
detects. A definite detect is defined as a fault that will produce a state difference at the
primary output pins in response to Test Program Set (TPS) patterns. A possible detect
is defined as a fault that produces an unknown state at the primary output pins when a
fault-free UUT would produce a known state.

When running a functional test of an UUT on a automated tester, the run-time
algorithm software compares the actual output pin failures to the fault dictionary.
From the comparison, the simulation displays the most likely faultsets within the fault
dictionary that best represents the failed devices that caused the output pin failure. A
mismatch number is a number that reflects the likelihood that one of the faults in the
fault set is the actual fault. The lower the mismatch number, the more likely it is that
the faultset contains the actual fault. The lowest mismatch number, zero (0), is shown
asan EXACT MATCH.



The mismatch value calculation is based on statistically defined weighting factors for
penalizing the fault dictionary differences (that is, state differences found at the
primary output pins in response to TPS patterns). A primary output difference
predicted by the simulator that does not reveal itself on the automated tester counts as
anine point weighting factor. A primary output difference which manifest itself on the
automated tester but was not predicted by the simulator also counts as a nine point
weighting factor. A primary output difference possibly predicted by the simulator that
does not reveal itself on the tester counts as a one point weighting factor.

METHODOLOGY

The current calculation of the Fault Dictionary Mismatch Value embedded in the
Teradyne VX2.02 software is based on summing the fault detects of definite and
possible detects. Furthermore, definite and possible detects have different weighting
factors and are predefined for calculating the mismatch value. This methodology may
be inappropriate for circuits that have a high number of possible detects in the fault
dictionary.

The problem arises when some UUTs are simulated with the inclusion of possible
faults to aid in reducing the fault ambiguity size of faultsets. A high number of
possible detects could cause the algorithm to overestimate the mismatch value for
particular faultsets that may contain the actual fault. The algorithm would erroneously
identify other faultsets that have lower mismatch values as having the actual fault.

For example, a UUT may have a faultset with a mismatch value of 21, (henceforth
known as faultset A) and another faultset with a value of 23, (henceforth known as
faultset B). Based on the mismatch value, the algorithm would select faultset A as
having the actual fault since it has the lower mismatch value. However, the selection
of this faultset may not be the best choice. If the number of fault detects for the
faultset A was two definite detects (with a weighting factor of nine each, subtotaling to
avalue of 18), and three possible detects (with a weighting factor of one each, giving a
grandtotal of 21) and faultset B has one definite detect and 14 possible detects, than
the best choice should have been faultset B since the one definite detect is likely to be
the actual fault.

TEST STRATEGY

A study was conducted to develop methods to improve the accuracy of the fault
dictionary. Several test strategies were suggested, which include: changing the
weighting factors of definite and possible detects, calculating the mismatch value
based on definite detects only, combining faultsets with equal mismatch values, and
combining faultsets with equal mismatch values and sort by definite detects.

The study indicated that the best option was to sort the faultsets based on definite
detects and in case of equal mismatch values to include the possible detects in the
calculation. A prototype software was developed to implement this methodology in



calculating the mismatch value. Fault isolation accuracy showed significant
improvement when using this new criteria.

This methodology was chosen to maintain the integrity of the weighting factor for the
definite and possible detected faults since the weighting factors were statistically
optimized in producing best scores for detected faults. Changing the weighting factors
may produce erroneous scores that may not be the best representative selection of
faultsets for fault isolation.

IMPLEMENTATION

To ensure the integrity of the weighting factors for fault detects, the software was
developed as a Functional Extension Program (FEP) to the VX2/DTU software. The
Consolidated Automated Support System (CASS) station was used as the platform for
executing the FEP. The FEP would calculate the mismatch value as opposed to
generating the data via the VX2/DTU system software. The FEP would discard any
possible detects as part of the calculation unless the resultant mismatch values for each
of the faultsets were equal (in this case the software includes the possible detects to
further isolate the fault).

The FEP isinvoked by a CASS ATLAS (Abbreviated Test Language for All Systems)
executive software. The FEP parses the Fault Dictionary file [.TAP or .SYM
formatted file] for fault data and compares it to the failing POPAT (Primary Output
Pattern) list. The routine then calculates the mismatch value based on the definite
detects of the fault data. In addition, the circuit description file if available is parsed
mainly to differentiate the drivers and receivers of failing pins. This is comparable to
how the current Teradyne's V X2 software operates.

The parameters that are passed to the executive software are the Test-Failed boolean
flag, the Mismatch Value score and the associated fault set data identified as the
primary and alternate causes of failure. The input database files required are the
aforementioned Failing POPAT list file, and the Fault Dictionary file. In addition, the
FEP also requires the Pin Order data file which contains the ordered list of primary
pins of the UUT. The database files that are generated for output are the Diagnostic
file which contains the detailed description of the faults extracted from the faultsets
with the lowest mismatch values and the Error file which contains any error messages.



The following diagram, figure 1, depicts the external data flow of the software that
processes the passed parameters to and from other software units.

L200
Circuit database
FEP Diagnostic File

Failing POPAT List * " T \

Fault Dictionary [TAP/SY M fileg]

ATLAS
PASSED
TEST PARAMETERS
EXECUTIVE

PIN_ORDER File *

* Generated by the DTU RTS [Digital Test Unit / Run Time Software]

Figurel. External Data Flow Diagram

The mismatch values are calculated for each faultset by extracting the data from the
fault dictionary and tallying them based on definite detects only. In case of faultsets
having equal mismatch values, possible detects are then used in the calculation to
further isolate the faultset. In case of further equal mismatch values, the faultsets are
combined into one faultset.

The selected faultset with the lowest mismatch value identifies the devices with the
fault which will be determined as replaceable units. The determination of the
replaceable unitsis based on the selected faultset and circuit database file.



CONCLUSION

Unlike the current VX2/DTU software in calculating the mismatch value, the FEP
derives its mismatch value by summing the results of definite detects only. As
mentioned before, possible detects are only included in the calculation when equal
mismatch values between faultsets are evident.

This paper has enumerated various test options, and proposed the aforementioned
methodology for fault isolation. Conceptually, the methodology can be part of any test
strategy in detecting and isolating faults. Full beta testing of the FEP successfully
demonstrated the improvement in selecting correct faultsets.

ACKNOWLEDGMENTS

The authors wish to thank the engineers at the Naval Surface Warfare Center (NSWC),
Crane Indiana, for their assistance in performing beta testing. Their feedback and
comments were extremely valuable in the software development process.

Special thanks to Joseph Mikolg for conducting the initial study and developing the
prototype software.



